Perspective transformation is also called projection transformation. The affine transformation we often call is a special case of perspective transformation. The purpose of perspective transformation is to convert an object that is a straight line in reality into a straight line through perspective transformation, which may appear as a diagonal line in the picture. Perspective transformation can map a rectangle to an arbitrary quadrilateral. This technology will be used later when our robot drives autonomously. Perspective transformation via function:
dst = cv2. warpPerspective(src, M, dsize[,flag, [,borderMode[,borderValue]]])
dst : The output image after perspective transformation, dsize determines the actual size of the output.
src:Source Image
M:3X3 transformation matrix
dsize: Output image size
flags:Interpolation method, the default is INTER_LINEAR (bilinear interpolation). When it is WARP_INVERSE_MAP, it means that M is an inverse transformation, which can realize the inverse transformation from the target dst to src.
borderMode:Edge type. Default is BORDER_CONSTANT. When the value is BORDER_TRANSPARENT, the values in the target image are not changed. These values correspond to the outliers in the original image.
borderValue:Boundary value, defaults to 0. Just like affine transformation, OpenCV will still provide a function cv2.getPerspectiveTransform() to provide the transformation matrix above.
The function is as follows:
matAffine = cv2.getPerspectiveTransform(matSrc, matDst)
matSrc:Enter the four vertex coordinates of the image.
matDst:Output the four vertex coordinates of the image.
Code path:/home/dofbot/Dofbot/4.opencv/2.Transform/07_perspectivity.ipynb
ximport cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('yahboom.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
#src 4->dst 4 upper left corner, lower left corner, upper right corner, lower right corner)
matSrc = np.float32([[200,100],[200,400],[600,100],[width-1,height-1]])
matDst = np.float32([[200,200],[200,300],[500,200],[500,400]])
#combination
matAffine = cv2.getPerspectiveTransform(matSrc,matDst)# mat 1 src 2 dst
dst = cv2.warpPerspective(img,matAffine,(width,height))
img_bgr2rgb = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB)
plt.imshow(img_bgr2rgb)
plt.show()